初中数学 6.4扇形统计图 教案

初中数学 COOCO.因你而专业 !
套卷教案课件下载new 试题搜索答案

初中数学 6.4扇形统计图 教案



  • 教学目标

      1.了解相反数的意义,会求有理数的相反数;

      2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

      3.初步认识对立统一的规律。
    教学建议

      一、重点、难点分析

      本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

      二、知识结构

      相反数的定义 相反数的性质及其判定 相反数的应用

      三、教法建议

      这节课教学的主要内容是互为相反数的概念。
        由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴——相反数——绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
     四、相反数的相关知识

      1.相反数的意义

      (1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

      (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

      (3)0的相反数是0。也只有0的相反数是它的本身。

      (4)相反数是表示两个数的相互关系,不能单独存在。

      2.相反数的表示
     在一个数的前面添上“-”号就成为原数的相反数。若 表示一个有理数,则 的相反数表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

      3.相反数的特性

      若 互为相反数,则 ,反之若 ,则 互为相反数。

      4.多重符号化简

      (1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。

      (2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

      果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

      例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

    相反数(一)

      一、素质教育目标

      (一)知识教学点

      1.了解:互为相反数的几何意义.

      2.掌握:给出一个数能求出它的相反数.

      (二)能力训练点

      1.训练学生会利用数轴采用数形结合的方法解决问题.

      2.培养学生自己归纳总结规律的能力.

      (三)德育渗透点

      1.通过解释相反数的几何意义,进一步渗透数形结合的思想.

      2.通过求一个数的相反数,使学生进一步认识对应、统一规律.

      (四)美育渗透点

      1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.

      2.通过简化一个数的符号,使学生进一步体会数学的简洁美.

      二、学法引导

      1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.

      2.学生学法:感性认识→理性认识→练习反馈→总结.

      三、重点、难点、疑点及解决办法

      1.重点:求已知数的相反数.

      2.难点:根据相反数的意义化简符号.

      四、课时安排

      1课时

      五、教具学具准备

      投影仪、三角板、自制胶片.

      六、师生互动活动设计

      学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.

      七、教学步骤

      (一)探索新知,导入新课

      1.互为相反数的概念的引出

      演示活动:要一个学生向前走5步,向后走5步.

      提出问题“如果向前为正,向前走5步,向后走5步各记作什么?

      学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.

      [板书]

       +5, -5

      师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.

      [板书]2.3  相反数

      【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.

      师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)

      师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)

      [板书]只有符号不同的两个数,其中一个叫另一个的相反数.

      【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.

      2.理解概念

      (出示投影1)

      判断:(1)-5是5的相反数( )

      (2)5是-5的相反数( )

      (3)与互为相反数( )

      (4)-5是相反数( )

      学生活动:学生讨论.

      【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.

      师:0的相反数是0.

      (出示投影2)

      1.在前面画的数轴上任意标出4个数,并标出它们的相反数.

      2.分别说出9,-7,0,-0.2的相反数.

      3.指出-2.4,,-1.7,1各是什么数的相反数?

      4.的相反数是什么?

      学生活动:1题同桌互相订正,2、3题抢答.

      【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数.2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是.”

      [板书]a的相反数是a

      师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.

      提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?

      .

      .

      .

      提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?

      学生活动:讨论、分析、回答.

      【教法说明】利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习

      (出示投影3)

      1.是______________的相反数,.

      2.是_____________的相反数,.

      3.是_____________的相反数,.

      4.是_____________的相反数,.

      学生活动:思考后口答.

      学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?

      [板书]   

      如:

       

       

       

      学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.

      【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.

      巩固练习:

      1.例题2   简化-(+3)-(-4)的符号.

      2.简化下列各数的符号

      

      3.自己编题

      学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.

      (三)归纳小结

      师:我们这节课学习了相反数,归纳如下:

      1.________________的两个数,我们说其中一个是另一个的相反数.

      2.表示求的_____________,表示______________.

      学生活动:空中内容由学生填出.

      【教法说明】通过问题形式归纳出本节的重点.

      (四)回顾反馈

      1.-1.6是__________的相反数,

      ____________的相反数是0.3.

      2.下列几对数中互为相反数的一对为( ).

      A.和B.与C.与

      3.5的相反数是________________;的相反数是___________;的相反数是________________.

      4.若,则;若,则.

      5.若是负数,则是___________数;若是负数,则是___________数.

      学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.

      【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高.

      八、随堂练习

      1.填表

    原数

     

    0

     

       

    相反数

     

    3

         

    -7

     

    倒数

         

       

    -1

      2.选择题

      (1)下列说法中,正确的是( )

      A.一个数的相反数一定是负数

      B.两个符号不同的数一定是相反数

      C.相反数等于本身的数只有零

      D.的相反数是-2

      (2)下列各组九中,是互为相反数的组数有( )

      ①和②-(-1)和+(-1)

      ③-(-2)和+(+2)  ④和

      A.4组  B.3组  C.2组  D.1组

      (3)下列语句中叙述正确的是( )

      A.是正数

      B.如果,那么

      C.如果,那么

      D.如果是负数,那么是正数

      九、布置作业

      (一)必做题:课本第61页A组2、3.

      (二)选做题:课本第62页B组1、2.

      十、板书设计

    2.3   相反数

    1.只有符号不同的两个数其中一个是另一个的相反数.

    2.0的相反数是0

    3.的相反数是.  例,……

      随堂练习答案

      1.略     2.C  B  D

      作业答案

      (一)必做题:

      1.(1)1.6,0.2,(2),3

      2.16,-20,50,8.07,

      (二)选作题:

      1.(1)6,(2)9

      2.(1);(2).
    5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
    相反数(二)

      教学目标

      1.使学生理解相反数的意义;

      2.使学生掌握求一个已知数的相反数;

      3.培养学生的观察、归纳与概括的能力.

      教学重点和难点

      重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性.

      难点:多重符号的化简.

      课堂教学过程设计

      一、从学生原有的认知结构提出问题

      二、师生共同研究相反数的定义

      

      特点?

      引导学生回答:符号不同,一正一负;数字相同.

      像这样,只有符号不同的两个数,我们说它们互为相反数,如+5与

      

      

      应点有什么特点?

      引导学生回答:分别在原点的两侧;到原点的距离相等.

      这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数.这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上又称它为相反数的几何意义.

      3.0的相反数是0.

      这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是相反数等于它本身的唯一的数.

      三、运用举例  变式练习

      1  (1)分别写出9与-7的相反数;

      

      例1由学生完成.

      在学习有理数时我们就指出字母可以表示一切有理数,那么数a的相反数如何表示?

      引导学生观察例1,自己得出结论:

      数a的相反数是-a,即在一个数前面加上一个负号即是它的相反数.

      1.当a=7时,-a=-7,7的相反数是-7;

      2.当-5时,-a=-(-5),读作“-5的相反数”,-5的相反数是5,因此,-(-5)=5.

      3.当a=0时,-a=-0,0的相反数是0,因此,-0=0.

      

      么意思?引导学生回答:-(-8)表示-8的相反数;-(+4)表示+4的相反数;

      

      2  简化-(+3),-(-4),+(-6),+(+5)的符号.

      能自己总结出简化符号的规律吗?

      括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

      课堂练习

      1.填空:

      (1)+1.3的相反数是______; (2)-3的相反数是______;

      

      (5)-(+4)是______的相反数;  (6)-(-7)是______的相反数.

      2.简化下列各数的符号:

    -(+8),+(-9),-(-6),-(+7),+(+5).

      3.下列两对数中,哪些是相等的数?哪对互为相反数?

      -(-8)与+(-8);-(+8)与+(-8).

      四、小结

      指导学生阅读教材,并总结本节课学习的主要内容:一是理解相反数的定义——代数定义与几何定义;二是求a的相反数;三是简化多重符号的问题.

      五、作业

      1.分别写出下列各数的相反数:

      

      2.在数轴上标出2,-4.5,0各数与它们的相反数.

      3.填空:

      (1)-1.6是______的相反数,______的相反数是-0.2.

      

      4.化简下列各数:

      

      5.填空:

      (1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;

      (3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

      课堂教学设计说明

      教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

    探究活动

      有理数a、b在数轴上的位置如图:

      将a,-a,b,-b,1,-1用“<”号排列出来.

      分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的相反数,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.

      解:在数轴上画出表示-a、-b的点:

      由图看出:-a<-1<b<-b<1<a.

      点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.