初中数学1.2 能得到直角三角形吗 教案
教案示例
第2节 能得到直角三角形吗
教学目标:
知识与技能:掌握直角三角形的判别条件,并能进行简单应用;
教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观:
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
重点难点:
重点: 能熟练运用勾股定理逆定理解决实际问题
难点:用面积证勾股定理能熟练运用勾股定理逆定理解决实际问题
1.把握勾股定理的逆定理;
2.用勾股定理的逆定理判定一个三角形是不是直角三角形。
教学过程
一、创设情境,激发学生兴趣、导入课题
展示一根用 13 个等距的结把它分成等长的12 段的绳子,请三个同学上台,按老师的要求操作。
甲:同时握住绳子的第一个结和第十三个结。
乙:握住第四个结。 丙:握住第八个结。
拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。
问:发现这个角是多少?(直角。)
展示投影 1。(书P9图1?10)
教师道白:这是古埃及人曾经用过这种方法得到直角,这个三角形三边长分别为多少?( 3、4、5 ) ,这三边满足了哪些条件? ( 32+42 = 52),是不是只有三边长为3、4、5的三角形才可以成为直角三角形呢?现在请同学们做一做。
二、做一做
下面的三组数分别是一个三角形的三边a、b、c。
5、12、13 7、24、25 8、15、17
1、这三组数都满足a2+b2 = c2吗?
同学们在运算、交流形成共识后,教师要学生完成。
2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?
同学们在在形成共识后板书:
如果三角形的三边长a、b、c满足a2+b2 = c2,那么这个三角形是直角三角形。
满足a2+b2 = c2的三个正整数,称为勾股数。
大家可以想这样的勾股数是很多的。
今后我们可以利用“三角形三边a、b、c满足a2+b2 = c2时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。
勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系:
a2+b2
= c2,那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
1.用勾股定理的逆定理判定一个三角形是否是直角三角形的步骤:
(1)首先求出最大边(如c);
(2)验证a+b
与c
是否具有相等关系;
若c2=a2+b,则△ABC是以∠C=90°的直角三角形。
若c2 ≠a2+b,则△ABC不是直角三角形。
2.直角三角形的判定方法小结:
(1)三角形中有两个角互余;
(2)勾股定理的逆定理;
3.紧记一些常用的勾股数,将为我们应用勾股定理逆定理带来方便,如3、4、5;5、12、13;6、8、10;12、16、20等。
三、随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15; ⑵15,36,39;
⑶12,35,36; ⑷12,18,22.
⒉已知∆ABC中BC=41, AC=40, AB=9, 则此三角形为_______三角形, ______是最大角
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.
四、小结:
1、满足a2 +b2=c2 ,那么这个三角形是直角三角形.
2、满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
教学反思:这是勾股定理的逆应用。大部分的同学只要能正确掌握勾股定理的话,都不难理解。当然勾股定理的理解掌握是关键。