初中数学-八年级数学教案数学教案-最简二次根式 教学设计示例4

初中数学 COOCO.因你而专业 !
套卷教案课件下载new 试题搜索答案

初中数学-八年级数学教案数学教案-最简二次根式 教学设计示例4



  • 数学教案-最简二次根式 教学设计示例4

    教学目标

      1.使学生理解最简二次根式的概念;

      2.掌握把二次根式化为最简二次根式的方法.

      教学重点和难点

      重点:化二次根式为最简二次根式的方法.

      难点:最简二次根式概念的理解.

      教学过程设计

      一、导入新课

      计算:

      

      

      我们再看下面的问题:

      
    简,得到
      
      

      从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便.

      二、新课

      答:

      1.被开方数的因数是整数或整式;

      2.被开方数中不含能开得尽方的因数或因式.

      满足上面两个条件的二次根式叫做最简二次根式.

      1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?

      

      (l)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.
      整数.

      (3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.

      (4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.

      (5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.

      (6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽的因数22

      指出:从(1),(2),(6)题可以看到如下两个结论.

      1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

      2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.

      2 把下列各式化为最简二次根式:

      

      分析:把被开方数分解因式或因数,再利用积的算术平方根的性质

      

      3 把下列各式化成最简二次根式:

      

      分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.

      题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.

      

      通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法.

      答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.

      如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.

      三、课堂练习

      1.在下列各式中,是最简二次根式的式子为 [ ]

      
      
    的二次根式的式子有_____个. [ ]

      A.2 B.3

      C.1 D.0

      3.把下列各式化成最简二次根式:

      

      答案:

      1.B

      2.B

      

      四、小结

      1.最简二次根式必须满足两个条件:

      (1)被开方数的因数是整数,因式是整式;

      (2)被开方数中不含能开得尽方的因数或因式.

      2.把一个式子化为最简二次根式的方法是:

      (1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;

      (2)如果被开方数含有分母,应去掉分母的根号.

      五、作业

      1.把下列各式化成最简二次根式:

      

      2.把下列各式化成最简二次根式:

      

      答案: