初中数学-八年级数学教案平方根

初中数学 COOCO.因你而专业 !
套卷教案课件下载new 试题搜索答案

初中数学-八年级数学教案平方根



  • 平方根

    一、教学目标

      1.理解一个数平方根和算术平方根的意义;

      2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

      3.通过本节的训练,提高学生的逻辑思维能力;

      4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

     二、教学重点和难点

      教学重点:平方根和算术平方根的概念及求法.

      教学难点:平方根与算术平方根联系与区别.

     三、教学方法

      讲练结合.

     四、教学手段

      幻灯片.

     五、教学过程

      (一)提问

      1.已知一正方形面积为50平方米,那么它的边长应为多少?

      2.已知一个数的平方等于1000,那么这个数是多少?

      3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

      这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

      1.(  )2=9;   2.(  )2 =0.25;

      3.

      5.(  )2=0.0081.

      学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

      由练习引出平方根的概念.

      (二)平方根概念

      如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

      用数学语言表达即为:若x2=a,则x叫做a的平方根.

      由练习知:±3是9的平方根;

      ±0.5是0.25的平方根;

      

      0的平方根是0;

      ±0.09是0.0081的平方根.

      由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

      (   )2=-4

      学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).

      (三)平方根性质

      1.一个正数有两个平方根,它们互为相反数.

      2.0有一个平方根,它是0本身.

      3.负数没有平方根.

      (四)开平方

      求一个数a的平方根的运算,叫做开平方的运算.

      由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

      (五)平方根的表示方法

      一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.

      练习:1.用正确的符号表示下列各数的平方根:

      ①26  ②247  ③0.2  ④3  ⑤

      解:①26 的平方根是

      ②247的平方根是  

      ③0.2的平方根是  

      ④3的平方根是

      ⑤ 的平方根是

      由学生说出上式的读法.

      
     例1.下列各数的平方根:

      (1)81; (2) ; (3) ; (4)0.49

      解:(1)∵(±9)2=81,

       ∴81的平方根为±9.即:

      (2)

        的平方根是 ,即

      (3)

        的平方根是 ,即

      (4)∵(±0.7)2=0.49,

       ∴0.49的平方根为±0.7.

        。

      小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个.

     六.总结

      本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识.

     七、作业

      教材P.127练习1、2、3、4.

     八、板书设计

    平方根

    (一)概念     (四)表示方法     例1

    (二)性质

    (三)开平方

    探究活动

    求平方根近似值的一种方法

      求一个正数的平方根的近似值,通常是查表.这里研究一种笔算求法.

      例1.求 的值.

      解 ∵92<97<102

       

       两边平方并整理得

       

       ∵x1为纯小数.

       

       18x1≈16,解得x1≈0.9,

       便可依次得到精确度

       为0.01,0.001,……的近似值,如:

       

       两边平方,舍去x2得19.8x2≈-1.01,